A Nested FGMRES Method for Parallel Calculation of Nuclear Reactor Transients
نویسندگان
چکیده
A semi-iterative method based on a nested application of Flexible Generalized Minimum Residual(FGMRES) was developed to solve the linear systems resulting from the application of the discretized two-phase hydrodynamics equations to nuclear reactor transient problems. The complex three-dimensional reactor problem is decomposed into simpler, more manageable problems which are then recombined sequentiallyby GMRES algorithms. Mathematically, the method consists of using an \inner" level GMRES to solve the preconditioner equation for an \outer" level GMRES. Applications were performed on practical, three-dimensional models of operating Pressurized Water Reactors (PWR). Serial and parallel applications were performed for a reactor model with two diierent details in the core representation. When appropriately tight convergence was enforced at each GMRES level, the results of the semi-iterative solver were in agreement with existing direct solution methods. For the larger model tested, the serial performance of GMRES was about a factor of 3 better than the direct solver and the parallel speedups were about 4 using 13 processors of the INTEL Paragon. Thus, for the larger problem over an order of magnitude reduction in the execution time was achieved indicating that the use of semi-iterative solvers and parallel computing can considerably reduce the computational load for practical PWR transient calculations.
منابع مشابه
Hierarchical Krylov and nested Krylov methods for extreme-scale computing
The solution of large, sparse linear systems is often a dominant phase of computation for simulations based on partial differential equations, which are ubiquitous in scientific and engineering applications. While preconditioned Krylov methods are widely used and offer many advantages for solving sparse linear systems that do not have highly convergent, geometric multigrid solvers or specialize...
متن کاملCalculation of nuclear level density parameter as a function of tmperature and mass number
Nuclear level density is one of the most important concepts in nuclear physics; basically, it is the key in dealing with nuclear statistical problems. This quantity plays an essential role in the statistical calculation of reactor physics, astrophysics, researches in the average energy of heavy- ion collision and calculations related to neutron evaporation and other applications. This quantity ...
متن کاملComputing Atomic Density Changes of Material Composition in Operation of the Nuclear Reactor Core
The present work investigates an appropriate way to calculate the 1700 atomic density changes in the reactor operations. To automate this procedure, a computer program has been designed by C#. This program suggests a way to solve this problem which is based on the solution system of differential equations (Bitman) that it is designed according to Runge-Kutta Fehlberg method. The designed softwa...
متن کاملComparison of (Th-233U) O2 and (Th-235U) O2 fuel burn up into a thermal research reactor using MCNPX 2.6 code
Background: Decrease of economically accessible uranium resources motivates consideration of breeding of fertile elements such as thorium. Material and Method: Thorium oxide fuel burn up calculation of a simulated research reactor cooled heavy water has been proposed in the present work using MCNPX 2.6 code. Two 233U and 235U isotopes have been used as fissile element of thorium oxide fuel. 135...
متن کاملImprovements in the decay heat model in the thermalhydraulic code TRAC-BF1
In the nuclear safety analysis, it is very important to be able to simulate the different transients that can occur in a nuclear power plant with a very high accuracy. The transient simulations involve both neutronic and thermalhydraulic calculations. One of the most used codes in nuclear industry is the TRAC-BF1 code, which has already been proved against different transients in many nuclear p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 13 شماره
صفحات -
تاریخ انتشار 1998